PHYSIQUE - CHIMIE - 2nde

Activité expérimentale n°11

Découverte de la notion de mole (Thème 1)

Objectifs: Les objectifs sont de prendre conscience de la nécessité d'une unité de quantité de matière adaptée à la chimie et de déterminer la quantité de matière contenue dans un échantillon donné de corps pur.

I Nécessité d'un changement d'échelle

On considère les deux situations suivantes :

1) Première situation

Question 1 : Compter 20 grains de riz (ou 20 pâtes, ou 20 lentilles, ou 20 grains de blé). L'objectif est de rassembler 200 grains de riz (ou 200 pâtes, ou 200 lentilles, ou 200 grains de blé). Vous disposez d'un bécher. Décrire clairement le protocole mis en oeuvre pour être le plus efficace possible.

2) Deuxième situation

Question 2 : Peser un clou en fer avec la meilleure précision. Soit m_{clou} la masse du clou.

Question 3 : On considère que le clou est un corps pur. Il ne contient que des atomes de fer de symbole Fe. Chaque atome contient donc A nucléons. On rappelle que la masse d'un nucléon est $m_n = 1,67.10^{-24}$ g. Après avoir donner la valeur de A, évaluer, par un calcul simple, le nombre N_a d'atomes de fer contenus dans le clou.

Conclusion : pour des objets macroscopiques, on se rend compte qu'ils contiennent un nombre N gigantesque d'atomes. Il faut donc se ramener à des nombres plus familiers en changeant d'échelle. On introduit donc une nouvelle unité de comptage : la mole.

II Une nouvelle unité de quantité de matière : la mole

Définition : Une mole (1 mol) représente une quantité de matière égale au nombre d'atomes qu'il y a dans 12 g de carbone ¹²C.

1) Le nombre (ou constante) d'Avogadro N_A

Question 4 : A partir de la définition donnée ci-dessus, calculer la masse d'un atome de carbone, et déterminer alors le nombre d'atomes de carbone 12 contenus dans une mole (1 mol) d'atomes de carbone 12. Ce nombre sera appelé nombre d'Avogadro et noté N_A .

Donnée: masse d'un nucléon est $m_n = 1,67.10^{-24}$ g.

2) La masse molaire

On considère le tableau suivant :

Atome	Н	С	О	Ca	Fe
Nombres de nucléons A					
Masse d'un atome (en g)					
Masse de 6,02.10 ²³ atomes					

Donnée : masse d'un nucléon est $m_n = 1,67.10^{-24}$ g.

Question 5 : Que peut-on remarquer une fois la dernière ligne du tableau remplie?

Question 6 : A quoi est alors égale la « masse d'une mole »(la masse molaire) d'un atome ?

Définition : La masse d'une mole d'un atome est appelée masse molaire atomique. C'est une constante; c'est une référence que l'on note M.

Question 7 : Ecrire la relation entre n, m et M en précisant les unités, où n est la quantité de matière (nombre de moles), m la masse de l'échantillon et M la masse molaire atomique.

Question 8 : En appliquant la formule ci-dessus, calculer la quantité de matière de fer, notée n_{Fe} , exprimée en mol, contenue dans le clou.