MATHEMATIQUES - 3ème

Année Scolaire 2021-2022

Evaluation n°9 - Correction

Vendredi 8 avril 2022

Exercice 1

Question : La résolution de chaque équation donne :

a)
$$2x + 7 = 5x - 4$$
$$-5x + 2x = -4 - 7$$
$$-3x = -11$$
$$x = \frac{-11}{-3}$$
$$x = \frac{11}{3}$$

b)
$$2x - 7(1 - 2x) = 4(x - 3)$$

 $2x - 7 + 14x = 4x - 12$
 $-4x + 2x + 14x = -12 + 7$
 $12x = -5$
 $x = \frac{-5}{12}$

L'ensemble des solutions est $S = \left\{ \frac{11}{3} \right\}$ L'ensemble des solutions est $S = \left\{ \frac{-5}{12} \right\}$

c)
$$12 - (1 - x) + 178x = 48x - 17(3 - 105x)$$

 $12 - 1 + x + 178x = 48x - 51 + 1785x$
 $-48x - 1785x + x - 178x = -51 - 12 + 1$
 $-1654x = -62$
 $x = \frac{-62}{-1654}$
 $x = \frac{31}{827}$

L'ensemble des solutions est $S = \left\{ \frac{31}{827} \right\}$

Exercice 2

Question : La résolution de chaque équation donne :

d)
$$(4x+3)(-2x+1)=0$$

Un produit de facteurs est nul si au moins l'un d'eux est nul :

On a d'une part
$$4x + 3 = 0$$
 et d'autre part $-2x + 1 = 0$

$$4x = -3$$

$$x = \frac{-3}{4}$$

$$x = \frac{-1}{-2}$$

L'ensemble des solutions de l'équation est $S = \left\{ \frac{-3}{4}; \frac{1}{2} \right\}$.

e)
$$16 = 36x^2$$

$$16 = 36x^{2}$$
$$16 - 36x^{2} = 0$$
$$(4 - 6x)(4 + 6x) = 0$$

Un produit de facteurs est nul si au moins l'un d'eux est nul

On a d'une part
$$4-6x=0$$
 et d'autre part $4+6x=0$

$$-6x=-4$$

$$x=\frac{-4}{-6}$$

$$x=\frac{2}{3}$$

$$x=\frac{2}{3}$$

$$x=\frac{2}{3}$$

L'ensemble des solutions de l'équation est $S = \left\{ \frac{-2}{3}; \frac{2}{3} \right\}$.

f)
$$x^2 - 2x = -1$$

$$x^{2}-2x = -1$$

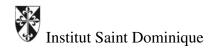
$$x^{2}-2x+1 = 0$$

$$(x-1)^{2} = 0$$

$$x-1 = 0$$

$$x = 1$$

L'ensemble des solutions de l'équation est $S = \{1\}$.



Exercice 3

Question : Posons *x* le nombre initial.

Le périmètre P_h de l'hexagone se calcule par $P_h = 6(x+3)$. Le périmètre P_p du pentagone se calcule par $P_p = 5(2x+3)$.

Pour que le périmètre de l'hexagone soit strictement supérieur à celui du pentagone, on doit alors résoudre l'inéquation $P_h > P_p$:

$$P_h > P_p$$

$$6(x+3) > 5(2x+3)$$

$$6x+18 > 10x+15$$

$$6x-10x > -18+15$$

$$-4x > -3$$

$$x < \frac{-3}{-4}$$

$$x < \frac{3}{4}$$

Les valeurs de x doivent être strictement inférieures à $\frac{3}{4}$. Mais attention, il faut aussi que les côtés restent positifs. Des valeurs de x sont aussi à exclure. Ainsi, il faut aussi que x+3>0 et que 2x+3>0. Pour conclure, il faut que $x\in\left]-3;\frac{3}{4}\right[$.

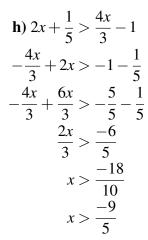
Exercice 4

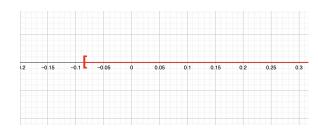
Question : La résolution de chaque inéquation donne :

g)
$$8x + 2 \ge 1 - 3x$$

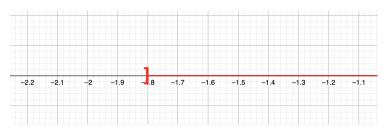
 $3x + 8x \ge 1 - 2$
 $11x \ge -1$
 $x \ge \frac{-1}{11}$

Les solutions de l'inéquations sont représentées sur la partie hachurée de la droite :





Les solutions de l'inéquations sont représentées sur la partie hachurée de la droite :



i)
$$4(3+6x) \le 36x - 38$$

 $12 + 24x \le 36x - 38$
 $-36x + 24x \le -38 - 12$
 $-12x \le -50$
 $x \ge \frac{-50}{-12}$
 $x \ge \frac{25}{6}$

Les solutions de l'inéquations sont représentées sur la partie hachurée de la droite :

