

MATHEMATIQUES - 2nde

Année Scolaire 2021-2022

Evaluation n°10 - Correction

Mardi 17 mai 2022

Exercice 1

Question 1 : Les tableaux de signes de chaque fonction donnent :

x	-∞		-0.75		0		2.75		+∞
Signe de $f(x)$		_	0	+	0	_	0	+	

x	-∞		2		+∞
Signe de $g(x)$		+	0	_	

Question 2 : Résoudre l'inéquation $f(x) \le g(x)$ revient à lire graphiquement les abscisses des points de la courbe (C_f) dont les ordonnées sont plus petites que celles des points de la courbe (C_g) . Cela donne l'intervalle $]-\infty;2,5]$.

Exercice 2

Question : Résolvons l'inéquation $f(x) \times g(x) \le 0$:

$$f(x) \times g(x) \le 0$$
$$(3x-2)(-1-2x) \le 0$$

La fonction $x \mapsto 3x - 2$ est une fonction affine dont le coefficient directeur est 3. Comme 3 > 0, la fonction est croissante et la valeur charnière s'obtient par :

$$3x - 2 = 0$$
$$3x = -2$$
$$x = \frac{2}{3}$$
grand deviant of

Le tableau de signe devient alors :

La fonction $x \mapsto -1 - 2x$ est une fonction affine dont le coefficient directeur est -2. Comme -2 < 0, la fonction est décroissante et la valeur charnière s'obtient par :

$$-1 - 2x = 0$$
$$-2x = 1$$
$$x = \frac{-1}{2}$$

-∞		$\frac{-1}{2}$		$\frac{2}{3}$		+∞
	_		_	0	+	
	+	0	_		_	
	_	0	+	0	_	
		-∞ - + -		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

A partir du tableau, les solutions de l'inéquation $f(x) \times g(x) \le 0$ sont dans l'ensemble S tel que $S = \left[-\infty; \frac{-1}{2} \right] \cup \left[\frac{2}{3}; +\infty \right[$.

Exercice 3

Question : Résolvons l'inéquation h(x) + k(x) < 0 :

$$h(x) + k(x) < 0$$

$$-4x(7x+6) + (x+5)(6+7x) < 0$$

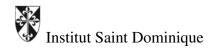
$$(7x+6)[-4x + (x+5)] < 0$$

$$(7x+6)(-4x+x+5) < 0$$

$$(7x+6)(-3x+5) < 0$$

La fonction $x \mapsto 7x + 6$ est une fonction affine dont le coefficient directeur est 7. Comme 7 > 0, la fonction est croissante et la valeur charnière s'obtient par :

$$7x + 6 = 0$$
$$7x = -6$$
$$x = \frac{-6}{7}$$


Le tableau de signe devient alors :

La fonction $x \mapsto -3x + 5$ est une fonction affine dont le coefficient directeur est -3. Comme -3 < 0, la fonction est décroissante et la valeur charnière s'obtient par :

$$-3x + 5 = 0$$
$$-3x = -5$$
$$x = \frac{5}{3}$$

X	-∞		$\frac{-6}{7}$		$\frac{5}{3}$		+∞
Signe de $7x + 6$		_	0	+		+	
Signe de $3x - 5$		+		+	0	_	
Signe du produit		_	0	+	0	_	

A partir du tableau, les solutions de l'inéquation h(x) + k(x) < 0 sont dans l'ensemble S tel que $S = \left] -\infty; \frac{-6}{7} \left[\cup \right] \frac{5}{3}; +\infty \right[.$

Exercice 4

Question : Résolvons l'inéquation $\frac{m(x)}{n(x)} \ge 1$.

$$\frac{m(x)}{n(x)} \ge 1$$

$$\frac{1+x}{1-x} \ge 1$$

$$\frac{1+x}{1-x} - 1 \ge 0$$

$$\frac{1+x-(1-x)}{1-x} \ge 0$$

$$\frac{1+x-1+x}{1-x} \ge 0$$

$$\frac{2x}{1-x} \ge 0$$

La fonction $x \mapsto 2x$ est une fonction linéaire dont le coefficient directeur est 2. Comme 2 > 0, la fonction est croissante et la valeur charnière est 0.

La fonction $x \mapsto 1-x$ est une fonction affine dont le coefficient directeur est -1. Comme -1 < 0, la fonction est décroissante et la valeur charnière s'obtient par :

$$1 - x = 0$$
$$-x = -1$$
$$x = 1$$

Le tableau de signe devient alors :

Х	-∞		0		1		+∞
Signe de 2 <i>x</i>		_	0	+		+	
Signe de $1-x$		+		+	0	_	
Signe du quotient		_	0	+		_	

A partir du tableau, les solutions de l'inéquation $\frac{m(x)}{n(x)} \ge 1$ ou encore $\frac{2x}{1-x} \ge 0$ sont dans l'ensemble S tel que S = [0; 1[.