
Institut Saint Dominique

Année Scolaire 2020-2021

3ème2

Mardi 12 janvier 2021

Objectif : Maîtriser les connaissances exigibles sur les traitements de données

Indications : Durée : libre - Calculatrice autorisée

Compétences évaluées : Chercher - Calculer

Exercice 1 (Exercice de brevet n°66 page 111)

Dans tout l'exercice, on étudie les performances réalisées par les athlètes qui ont participé aux finales du 100 m masculin des jeux olympiques de 2016 et de 2012.

On donne ci-dessous des informations sur les temps mis par les athlètes pour parcourir 100 m :

Finale du 100 m aux jeux olympiques de 2016 :

i mare and i so in anni jeun orj imprejues ar zoro .									
10,04 s	9,96 q	9,81 s	9,91 s	10,06 s	9,89 s	9,93 s	9,94 s		

Finale du 100 m aux jeux olympiques de 2012 :

- Nombre de finalistes : 8

- Temps le plus long : 11,99 s

- Etendue des temps : 2,36 s

- Moyenne des temps : 10,01 s

- Médiane des temps : 9,84 s

Question 1 : Quel est le temps du vainqueur de la finale en 2016?

Question 2 : Lors de quelle finale la moyenne des temps pour effectuer 100 m est-elle la plus petite?

Question 3 : Lors de quelle finale le meilleur temps a-t-il été réalisé?

Question 4 : L'affirmation suivante est-elle vraie ou fausse? « Seulement trois athlètes ont mis moins de 10 s à parcourir les 100 m de la finale de 2012. »

Question 5 : C'est lors de la finale de 2012 qu'il y a eu le plus d'athètes ayant réussi à parcourir le 100 m en moins de 10 s. Combien d'athlètes ont réalisé un temps inférieur à 10 s lors de cette finale de 2012?

Exercice 2 (Exercice de brevet n°67 page 112)

Parmi les nombreux polluants de l'air, les particules fines sont régulièrement surveillées.

Les PM10 sont des particules fines dont le diamètre est inférieure à 0,01 mm.

En janvier 2017, les villes de Lyon et Grenoble ont connu un épisode de pollution aux particules fines. Voici des données concernant la période du 16 au 25 janvier 2017 :

Données statistiques sur les concentrations journalières en PM10 du 16 au 25 janvier 2017 à Lyon :

- Moyenne : $72.5 \mu g/m^3$ - Médiane : $83.5 \mu g/m^3$

Concentration minimale : 22 μg/m³
Concentration maximale : 107 μg/m³

Relevés des concentrations journalières en PM10 du 16 au 25 janvier 2017 à Grenoble :

Date	Concentration PM10 en μg/m ³
16 janvier	32
17 janvier	39
18 janvier	52
19 janvier	57
20 janvier	78
21 janvier	63
22 janvier	60
23 janvier	82
24 janvier	82
25 janvier	89

Question 1 : Laquelle de ces deux villes a eu la plus forte concentration moyenne en PM10 entre le 16 et le 25 janvier?

Question 2 : Calculer l'étendue des séries des relevés en PM10 à Lyon et à Grenoble. La quelle de ces deux villes a eu l'étendue la plus importante ? Interpréter ce dernier résultats.

Question 3 : L'affirmation suivante est-elle exacte ? Justifier votre réponse : « Du 16 au 25 janvier, le seuil d'alerte de $80~\mu n$ g/m³ par jour a été dépassé au moins 5 fois à Lyon. »

Exercice 3 (Exercice de brevet n°82 page 122)

Document 1: Le surpoids

Le surpoids est devenu un problème majeur de santé, celui-ci prédispose à beaucoup de maladies et diminue l'espérance de vie.

L'indice le plus couramment utilisé est celui de masse corporelle (IMC).

Document 2 : Calcul de l'IMC

L'IMC est une grandeur internationale permettant de déterminer la corpulence d'une personne adulte entre 18 ans et 65 ans.

Il se calcule avec la formule suivante : $IMC = \frac{\text{masse}}{\text{taille}^2}$ avec « masse »en kg et « taille »en m.

Normes:

- $18, 5 \leq IMC < 25$: corpulence normale

- $25 \leq IMC < 30$: surpoids

- $IMC \ge 30$: obésité

Question 1 : Dans une entreprise, lors d'une visite médiale, un médecin calcule l'IMC de six employés. Il utilise pour cela une feuille de tableur dont voici un extrait ci-après :

	Α	В	С	D	E	F	G
1	Taille (en m)	1,69	1,72	1,75	1,78	1,86	1,88
2	Masse (en kg)	72	85	74	70	115	65
3	IMC (*)	25,2	28,7	24,2	22,1	33,2	24
4							

Combien d'employés sont en situation de surpoids ou d'obésité dans cette entreprise?

Question 2 : Laquelle de ces formules a-t-on écrite dans la cellule B3, puis recopiée à droite, pour calculer l'IMC?

$$= 72/1.69^2$$
 $= B1/(B2*B2)$ $= B2/(B1*B1)$ $= SB2/(SB1*SB1)$

Question 3 : Le médecin a fait le bilan de l'IMC de chacun des 41 employés de cette entreprise. Il a reporté les informations recueillies dans le tableau suivant dans lesquel les IMC ont été arrondis à l'unité près.

IMC	20	22	23	24	25	29	30	33	Total
Effectif	9	12	6	8	2	1	1	2	41

Calculer une valeur approchée, arrondie à l'entier près, de l'IMC moyen des employés de cette entreprise.

Question 4 : Quel est l'IMC médian? Interpréter ce résultats.

Question 5 : On lit sur certains magazines : « On estime qu'au moins 5 % de la population mondiale est en surpoids ou est obèse. »Est-ce le cas pour les employés de cette entreprise?