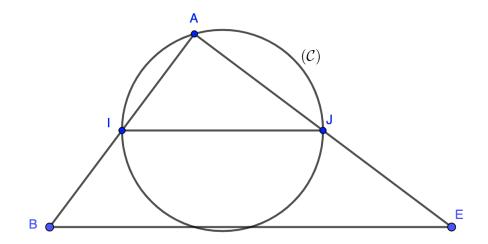
Institut Saint Dominique

Année Scolaire 2020-2021

3ème 2

Mardi 18 mai 2021


Objectif: Maîtriser les connaissances exigibles au D.N.B.

<u>Indications</u>: Durée : 2h - Calculatrice autorisée - Sujet à rendre avec la copie

Compétences évaluées : Chercher - Modéliser - Raisonner - Calculer - Communiquer

Exercice 1 (7 points)

On considère la figure suivante :

Dans cette figure (qui n'est pas à l'échelle):

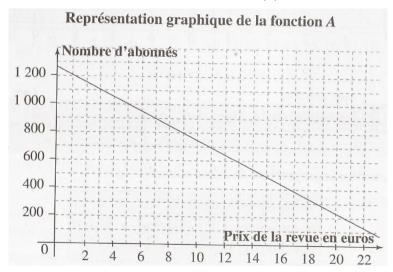
- ABE est un triangle
- -AB = 6 cm
- -AE = 8 cm
- -BE = 10 cm
- I et J sont les milieux respectifs des côtés [AB] et [AE]
- le cercle (\mathscr{C}) passe par les points I, J et A.

Question 1 : Peut-on affirmer que les droites (IJ) et (BE) sont parallèles ? (3 points)

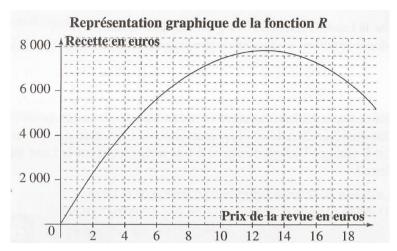
Question 2 : Montrer que le triangle *ABE* est rectangle. (2 points)

Question 3 : Quelle est la mesure de l'angle \widehat{AEB} ? On donnera une valeur approchée au degré près. (2 points)

Exercice 2 (4,5 points)


Cet exercice est un Q.C.M. (questionnaire à choix multiples). Pour chaque ligne du tableau, une seule affirmation est juste.

	Questions	Réponse A	Réponse B	Réponse C
1	La forme développée de $(x-1)^2$ est :	(x-1)(x+1)	$x^2 - 2x + 1$	$x^2 + 2x + 1$
2	Une solution de l'équation $2x^2 + 3x - 2 = 0$ est :	0	2	-2
3	On considère la fonction $f: x \longmapsto 3x + 2$. Un antécédent de -7 par la fonction f est :	-19	-3	-7
4	Lorsqu'on regarde un angle de 18°à la loupe de grossissement 2, on voit un angle de :	9°	36°	18°
5	On considère la fonction $g: x \longmapsto x^2 + 7$. Quelle est la formule à entrer dans la cellule B2 pour calculer $g(-2): \begin{array}{c c} A & B \\ \hline 1 & x & g(x) \\ \hline 2 & -2 \\ \hline 3 & \end{array}$	=A2*A2+7	=-2 ² +7	=A2*2+7
6	Quelle expression est égale à 6 si on choisit la valeur $x = -1$?	$-3x^2$	6(x+1)	$5x^2 + 1$
7	Le développement de $(x+3)(2x+4)-2(5x+6)$ est :	$2x^2$	$2x^2 + 20x + 24$	$2x^2 + 24$
8	La factorisation de $9x^2 - 16$ est	$(3x-4)^2$	(3x+4)(3x-4)	$(3x+4)^2$
9	Les solutions de l'équation $(x-5)(3x+4) = 0$ sont	$\frac{4}{3}$ et 5	$\frac{-4}{3}$ et 5	$\frac{4}{3}$ et -5


Question : Sur la copie, indiquer le numéro de la question et la lettre correspondant à la réponse. On ne demande pas de justifier. $(9 \times 0.5 \ point)$

Exercice 3 (11 points)

Le nombre d'abonnés à une revue dépend du prix de la revue. Pour un prix compris entre 0 et $20 \in$, le nombre d'abonnés est donné par la fonction A telle que A(x) = -50x + 1250.

La recette, c'est-à-dire le montant perçu par l'éditeur de cette revue, est donnée par la fonction R telle que $R(x) = -50x^2 + 1250x$.

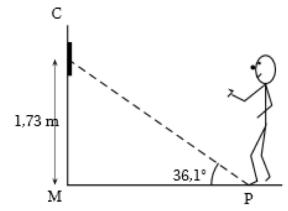
Question 1 : Le nombre d'abonnés est-il proportionnel au prix de la revue ? Justifier. (1 point)

Question 2 : Résoudre algébriquement A(x) = 750 et interpréter concrètement votre solution. (1,5 point)

Question 3 : Calculer l'image de 4 par la fonction *R* et interpréter concrètement votre réponse. (1,5 point)

Question 4 : Déterminer graphiquement pour quel prix de la revue la recette de l'éditeur est maximale. (On laissera les traits de la lecture graphique apparents) (1 point)

Question 5 : Déterminer graphiquement les antécédents de 6 800 par *R* et interpréter concrètement ce résultat. (On laissera les traits de la lecture graphique apparents) (2 points)


Question 6 : Lorsque la revue coûte 5 euros, déterminer le nombre d'abonnés et la recette, graphiquement et par le calcul. (On laissera les traits de la lecture graphique apparents) $(2 \times 2 \text{ points})$

Exercice 4 (9,5 points)

Le jeu de fléchettes consiste à lancer 3 fléchettes sur une cible. La position des fléchettes sur la cible détermine le nombre de points obtenus.

La cible est sinstallée de sorte que son centre de trouve à 1,73 m du sol. Les pieds du joueur ne doivent pas s'approcher à moins de 2,37 m lorsqu'il lance les fléchettes. Pour cela, un dispositif électronique est installé qui, en mesurant l'angle, calcule automatiquement la distance du joueur au mur. Il sonne si la distance n'est pas réglementaire.

Question 1 : Un joueur s'apprête à lancer une fléchette. Le mur est perpendiculaire au sol. Est-ce que la sonnerie va se déclencher? (2,5 points)

Question 2 : On a relevé dans une feuille de tableur les points obtenus par Rémi et Nadia lors de sept parties de fléchettes. Le résultat de Nadia lors de la partie 6 a été égaré :

Partie	1	2	3	4	5	6	7	Moyenne	Médiane
Rémi	40	35	85	67	28	74	28		
Nadia	12	62	7	100	81		30	51	

Calculer le nombre moyen de points obtenus par Rémi. (2 points)

Question 3 : Sachant que Nadia a obtenu en moyenne 51 points par partie, calculer le nombre de points qu'elle a obtenu à la partie 6. (2 points)

Question 4 : Déterminer le nombre médian de points obtenus par Rémi, puis celui des points obtenus par Nadia. $(2 \times 1,5 \ point)$

Exercice 5 (6 points)

On considère trois documents :

■ Document 1 : Principe de fonctionnement d'un radar tronçon

- Étape 1 : enregistrement de la plaque d'immatriculation et de l'heure de passage par un premier portique.
- Étape 2 : enregistrement de la plaque d'immatriculation et de l'heure de passage par un second portique.
- Étape 3 : calcul de la vitesse moyenne du véhicule entre les deux radars par un ordinateur.
- Étape 4 : calcul de la vitesse retenue afin de prendre en compte les erreurs de précision du radar.
- Étape 5 : si la vitesse retenue est au-dessus de la vitesse limite, l'automobiliste reçoit une contravention.

■ Document 2 : Calcul de la vitesse retenue pour la contravention

Vitesse moyenne calculée par l'ordinateur	inférieure à 100 km/h	supérieure à 100 km/h	
Vitesse retenue	On enlève 5 km/h à la vitesse enregistrée	On diminue la vitesse enregistrée de 5%	
Exemples	Vitesse enregistrée : 97 km/h Vitesse retenue : 92 km/h	Vitesse enregistrée : 125 km/h Vitesse retenue : 118,75 km/h	

■ Document 3 : Le radar tronçon du pont d'Oléron

Le pont d'Oléron est équipé d'un radar tronçon sur une distance de 3,2 km. Sur le pont, la vitesse est limitée à 90 km/h.

Question 1 : Les deux personnes suivantes ont reçu une contravention après avoir emprunté le pont d'Oléron :

<u>Cas 1</u>: Madame Surget a été enregistrée à une vitesse moyenne de 107 km/h. Quelle est la vitesse retenue? (2 points)

<u>Cas 2</u>: Monsieur Lagarde a mis 2 minutes pour parcourir la distance entre les deux points d'enregistrement. Quelle est la vitesse retenue? (2 points)

Question 2 : La plaque d'immatriculation de Monsieur Durand a été enregistrée à 13 h 46 min 54 s puis à 13 h 48 min 41 s. A-t-il eu une contravention ? *(2 points)*

Exercice 6 (6 points)

On donne les trois expressions suivantes :

$$A = \frac{2 - \frac{11}{14}}{\frac{4}{7} - 2} \qquad \qquad E = \frac{2,5 \times \left(10^3\right)^4 \times 10^{-8}}{50 \times 10^{-2}} \qquad \qquad C = \left(\frac{2}{54} \div \frac{8}{15}\right) \times \left(\frac{4}{7} \div \frac{5}{21}\right)$$

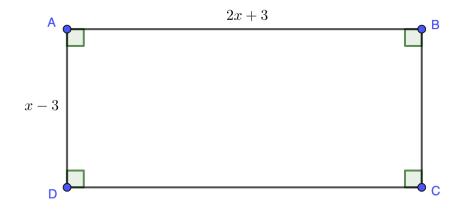
Remarque: Pour les questions suivantes, tout calcul non détaillé ne sera pas validé.

Question 1 : Donner l'écriture décimale de *A. (2 points)*

Question 2 : Donner l'ecriture scientifique de *B.* (2 points)

Question 3 : Donner l'expression C sous forme de fraction irréductible. (2 points)

Exercice 7 (6 points)


On donne la feuille de calcul ci-contre :

La colonne B donne les valeurs de l'expression $2x^2 - 3x - 9$ pour quelques valeurs de x de la colonne A.

Question 1 : Si on tape le nombre 6 dans la cellule A17, quelle valeur va-t-on obtenir dans la cellule B17? (*1 point*)

Question 2 : À l'aide du tableur, trouver deux solutions de l'équation : $2x^2 - 3x - 9 = 0$ (2 points)

Question 3 : La figure ci-dessous représente un rectangle de longueur AB = 2x + 3 et de largeur AD = x - 3. Montrer que l'aire \mathscr{A} du rectangle ABCD s'exprime par $\mathscr{A} = 2x^2 - 3x - 9$. (2 points)

Question 4 : L'unité de longueur est le cm. Donner une valeur de x pour laquelle l'aire du rectangle ci-dessus est égale à 5 cm². Justifier. (1 point)

	A	В
	х	$2x^2 - 3x - 9$
1	-2,5	11
2	-2	5
3	-1,5	0
4	-1	-4
5	-0,5	-7
6	0	-9
7	0,5	-10
8	1	-10
9	1,5	-9
10	2	-7
11	2,5	-4
12	3	0
13	3,5	5
14	4	11
15	4,5	18
16	5	26
17		

Compétences évaluées

CH 1		
Exercice 3	Extraire d'un document les informations utiles, les reformuler, les organiser, les confronter à des connaissances	
Exercice 5		
MO 1		
Exercice 1	Traduire un langage mathématique une situation réelle	
Exercice 4		
RA 3	Démontrer : utiliser un raisonnement logique et des règles établies	
Exercice 1		
Exercice 5		
CA 1	Calculer avec des nombres rationnels de manière exacte ou approchée, en	
Exercice 2	combinant de façon appropriée le calcul mental, le calcul posé et le calcul	
Exercice 6	instrumental	
CA 3		
Exercice 2	Calculer en utilisant le langage algébrique	
Exercice 7		
CO 2		
Exercice 1	Expliquer à l'écrit sa démarche, son raisonnement et argumenter.	
Exercice 5		