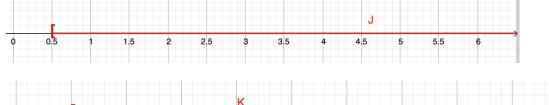
Correction de l'évaluation n°2 de mathématiques du mardi 21 septembre 2020

Exercice 1

Question 1 : L'ensemble des nombres réels, noté \mathbb{R} est l'ensemble des nombres rationnels et des nombres irrationnels.

Question 2 : La représentation de chacun des ensembles ci-dessus sur une droite des réels donne :



Question 3 : L'appartenance des nombres donne :

$$0, 5 \in J \text{ et } 0, 5 \in K$$

$$3 \in I$$
; $3 \in J$ et $3 \in K$

$$-\sqrt{2} \in K$$

$$\frac{-11}{3}$$
 n'appartient à aucun intervalle

Exercice 2

Question 1:

Les solutions de l'inéquation $|x-10| \le 5$ sont représentées dans un intervalle de centre c=10 et de rayon r=5. Ainsi, l'intervalle des solutions donne I=[5;15].

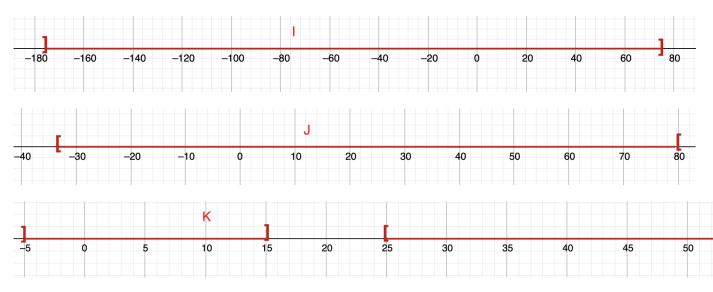
Les solutions de l'inéquation $|x - \sqrt{3}| < 1$ sont représentées dans un intervalle de centre $c = \sqrt{3}$ et de rayon r = 1. Ainsi, l'intervalle des solutions donne $I = \left[\sqrt{3} - 1; \sqrt{3} + 1\right]$.

L'inéquation |x+1| < 4 s'écrit |x-(-1)| < 4. Les solutions de l'inéquation |x-(-1)| < 4 sont représentées dans un intervalle de centre c=-1 et de rayon r=4. Ainsi, l'intervalle des solutions donne I=]-5;3[.

Question 2 : Le nombre π ne vérifie aucune de ces équations.

Exercice 3

Question 1 : La représentation de chacun des ensembles ci-dessus sur une droite des réels donne :



Question 2:

L'intervalle qui vérifie $I \cap J$ est l'ensemble des nombres x qui appartiennent à la fois à I et à J. Ce qui donne $I \cap J = \left\lceil \frac{-67}{2}; 75 \right\rceil$.

L'intervalle qui vérifie $I \cup J$ est l'ensemble des nombres x qui appartiennent à la fois à I ou à J. Ce qui donne $I \cup J = \left[-175; \frac{238}{3} \right]$.

Exercice 4

Ouestion 1:

L'intervalle I est centré en un point d'abscisse c=-2. L'intervalle d'amplitude d=0,8 a donc pour rayon r=0,4. Ainsi, l'écriture à l'aide d'une valeur absolue donne |x+2|<0,4.

L'intervalle J est centré en un point d'abscisse $c=-\frac{1}{2}$. L'intervalle d'amplitude d=1 a donc pour rayon $r=\frac{1}{2}$. Ainsi, l'écriture à l'aide d'une valeur absolue donne $|x+\frac{1}{2}|\leqslant \frac{1}{2}$.

L'intervalle K est centré en un point d'abscisse c=2. L'intervalle d'amplitude d=1,2 a donc pour rayon r=0,6. Ainsi, l'écriture à l'aide d'une valeur absolue donne |x-2|<0,6.

Question 2 : Les écritures complétées donne :

$$|y - \frac{-1}{2}| > \frac{1}{2}$$
 $y \in]-\infty; -1[\cup]0; +\infty[$